Learning activation functions from data using cubic spline interpolation
نویسندگان
چکیده
Neural networks require a careful design in order to perform properly on a given task. In particular, selecting a good activation function (possibly in a data-dependent fashion) is a crucial step, which remains an open problem in the research community. Despite a large amount of investigations, most current implementations simply select one fixed function from a small set of candidates, which is not adapted during training, and is shared among all neurons throughout the different layers. However, neither two of these assumptions can be supposed optimal in practice. In this paper, we present a principled way to have data-dependent adaptation of the activation functions, which is performed independently for each neuron. This is achieved by leveraging over past and present advances on cubic spline interpolation, allowing for local adaptation of the functions around their regions of use. The resulting algorithm is relatively cheap to implement, and overfitting is counterbalanced by the inclusion of a novel damping criterion, which penalizes unwanted oscillations from a predefined shape. Experimental results validate the proposal over two well-known benchmarks.
منابع مشابه
Piecewise cubic interpolation of fuzzy data based on B-spline basis functions
In this paper fuzzy piecewise cubic interpolation is constructed for fuzzy data based on B-spline basis functions. We add two new additional conditions which guarantee uniqueness of fuzzy B-spline interpolation.Other conditions are imposed on the interpolation data to guarantee that the interpolation function to be a well-defined fuzzy function. Finally some examples are given to illustrate the...
متن کاملNon Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations
Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...
متن کاملA Smooth Rational Spline for Visualizing Monotone Data
A C curve interpolation scheme for monotonic data has been developed. This scheme uses piecewise rational cubic functions. The two families of parameters, in the description of the rational interpolant, have been constrained to preserve the shape of the data. The monotone rational cubic spline scheme has a unique representation.
متن کاملC Rational Cubic/Linear Trigonometric Interpolation Spline with Positivity-preserving Property
A class of C rational cubic/linear trigonometric interpolation spline with two local parameters is proposed. Simple sufficient conditions for constructing positivity-preserving interpolation curves are developed. By using the boolean sum of quadratic trigonometric interpolating operators to blend together the proposed rational cubic/linear trigonometric interpolation splines as four boundary fu...
متن کاملON INTERPOLATION of FUNCTIONS with a BOUNDARY LAYER BY CUBIC SPLINES
The problem of article is cubic spline-interpolation of functions having high gradient regions. It is shown that uniform grids are inefficient to be used. In case of piecewise-uniform grids, concentrated in the boundary layer, for cubic spline interpolation are announced asymptotically exact estimates on a class of functions with an exponential boundary layer. There are obtained results showing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1605.05509 شماره
صفحات -
تاریخ انتشار 2016